IKK beta plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide.
نویسندگان
چکیده
Activation of the I kappa B kinase (IKK) complex by LPS induces phosphorylation and degradation of I kappa B alpha, leading to the nuclear translocation of NF-kappa B. Although it is essential for NF-kappa B activation, emerging evidence has indicated that the nuclear translocation of NF-kappa B is not sufficient to activate NF-kappa B-dependent transcription. Here, we reported that LPS induced the phosphorylation of the p65 trans-activation domain on serine 536 in monocytes/macrophages. Using mouse embryonic fibroblasts lacking either IKK alpha or IKK beta, we found that IKK beta played an essential role in LPS-induced p65 phosphorylation on serine 536, while IKK alpha was partially required for the p65 phosphorylation. The LPS-induced p65 phosphorylation on serine 536 was independent of the phosphatidylinositol 3'-kinase/Akt signaling pathway. Furthermore, we found that the phosphorylation on serine 536 increased the p65 transcription activity. In summary, our results demonstrate that IKK beta plays an essential role in the LPS-induced p65 phosphorylation on serine 536, which may represent a mechanism to regulate the NF-kappa B transcription activity by LPS.
منابع مشابه
IKK Plays an Essential Role in the Phosphorylation of RelA/p65 on Serine 536 Induced by Lipopolysaccharide
متن کامل
A Novel NF- B Pathway Involving IKK and p65/RelA Ser-536 Phosphorylation Results in p53 Inhibition in the Absence of NF- B Transcriptional Activity*
Nuclear factor B (NFB) plays an important role in regulating cellular transformation and apoptosis. The human T-cell lymphotropic virus type I protein, Tax, which is critical for viral transformation, modulates the transcription of several cellular genes through activation of NFB. We have demonstrated previously that Tax inhibits p53 activity through the p65/RelA subunit of NFB. We now present ...
متن کاملVGB3 Induces Apoptosis by Inhibiting Phosphorylation of NF-κB p65 at Serine 536 in the Human Umbilical Vein Endothelial Cells
Background and objectives: Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) inhibition results in an increase in apoptosis. It has been demonstrated that NF-κB subunit p65 phosphorylation at the IκB kinase phosphorylation site serine 536 (Ser536) is essential for the NF-κB nuclear translocation and activation. Therefore, NF-κB can be downregulated by suppressing its phosph...
متن کاملProteasome inhibitors induce death but activate NF-kappaB on endometrial carcinoma cell lines and primary culture explants.
Proteasome inhibitors are currently used as chemotherapeutic drugs because of their ability to block NF-kappaB, a transcription factor constitutively activated in many different types of human cancer. In the present study, we demonstrate that proteasome inhibitors induce cell death in endometrial carcinoma cell lines and primary explants but, instead of blocking NF-kappaB, they increase its tra...
متن کاملIL-1 receptor-associated kinase 1 is critical for latent membrane protein 1-induced p65/RelA serine 536 phosphorylation and NF-kappaB activation.
Epstein-Barr virus latent infection integral membrane protein 1 (LMP1) mimics a constitutively active TNF receptor (TNFR). LMP1 has two C-terminal cytosolic domains, transformation effector sites (TES)1 and -2, that engage TNFR-associated factors (TRAFs) and the TNFR-associated death domain protein, respectively, and activate NF-kappaB. NF-kappaB activation is critical for Epstein-Barr virus-in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of immunology
دوره 170 11 شماره
صفحات -
تاریخ انتشار 2003